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The World that Was: Computational 
Architectures 
•  Machine architectures 

– Single CPU, single core 
– Vector, then single-core MPPs 
–  “Large” SMP platforms 
– Relatively well balanced: memory, FLOPS,I/O 
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The World that Was: Software 
Architecture 
•  Data Analysis and Visualization (DAV) 

Software 
– Subroutine-callable libraries 
– MPI-per core executables 
– And a generation of single-threaded apps 

NCAR graphics 
VisIt, ParaView  
ferret, CDAT, gnuplot 
AVS, DX, …  
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The World that Was: Use Models 

•  Post Hoc 
– Simulations save data to disk 

•  Question: how much support to uses have centers 
given for parallel I/O over the years? (footnote) 

– Later, have a look at what was saved 
– Some noteworthy exceptions: 

•  Cactus – PSE for building codes and plugging in 
“thorns” that do vis/analysis 

•  CUMULVS (ca 2004) – computational steering/vis 
•  Other custom solutions 
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The World that Will Be: Slide of Doom (1) 

Scientific Discovery at the Exascale

4.1 Exascale System Architecture

Potential exascale system architecture parameters are shown in Table 1. The table provides projected
numbers for the design of two “swim lanes” of hardware design representing radically di↵erent design choices.
Also shown are the equivalent metrics for a machine today and the di↵erence from today’s machines.

Table 1: Expected Exascale Architecture Parameters and Comparison with Current Hardware (from “The
Scientific Grand Challenges Workshop: Architectures and Technology for Extreme Scale Computing” [55]).

“2018”
System Parameter 2011 Swim Lane 1 Swim Lane 2 Factor Change

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW 20 MW 3

System Memory 0.3 PB 32–64 PB 100–200
Total Concurrency 225K 1B⇥10 1B⇥100 40,000–400,000
Node Performance 125 GF 1 TF 10 TF 8–80
Node Concurrency 12 1,000 10,000 83–830

Network BW 1.5 GB/s 100 GB/s 1000 GB/s 66–660
System Size (nodes) 18700 1,000,000 100,000 50–500

I/O Capacity 15 PB 300–1000 PB 20–67
I/O BW 0.2 TB/s 20–60 TB/s 10–30

From examining these di↵erences it is clear that an exascale-era machine will not simply be a petascale
machine scaled in every dimension by a factor of 1,000. The principal reason for this is the need to control
the power usage of such a machine.

The implications for users of such systems are numerous:

• Total concurrency in the applications must rise by a factor of about 40,000–400,000, but
available memory will rise only by a factor of about 100. From a scientist’s perspective, the
ratio of memory to compute capability is critical in determining the size of the problem that can be
solved. The processor dictates how much computing can be done; the memory dictates the size of
the problem that can be handled. The disparity of growth between computing and storage means
that memory will become a much more dominant factor in the size of problem that can be solved, so
applications cannot just scale to the speed of the machine. In other words, the current weak-scaling
approaches will not work. Scientists and computer scientists will have to rethink how they are going
to use the systems; the factor of >100 loss in memory per compute thread means that there will be a
need to completely redesign current application codes, and the supporting visualization and analytics
frameworks, to enable them to exploit parallelism as much as possible. It is also important to note
that most of this parallelism will be on-node.

• For both power and performance reasons, locality of data and computation will be much
more important at the exascale. On an exascale-class architecture, the most expensive operation,
from both a power and performance perspective, will be moving data. The further the data is moved,
the more expensive the process will be. Therefore, approaches that maximize locality as much as
possible and pay close attention to their data movement are likely to be the most successful. As well
as locality between nodes (horizontal locality), it will also be essential to pay attention to on-node
locality (vertical locality), as the memory hierarchy is likely to get deeper. This also implies that
synchronization will be very expensive, and the work required to manage synchronization will be high.
Thus successful approaches will also minimize the amount of synchronization required.

• The I/O storage subsystem of an exascale machine will be, relatively speaking, much
smaller and slower compared with both the peak flops and the memory capacity. From
both an energy usage and a cost perspective, it seems likely that much less aggregate disk-based I/O
capacity and bandwidth will be available on an exascale-class machine. Thus, both the storage of
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Aggregate concurrency grows by O(5-6)  
Memory grows by O(2): less memory per core. 
I/O capacity, BW grows by O(1): can’t save all data. 
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The World that Will Be: Use Models 

For computational and experimental 
science: 
•  Post hoc. There will always be data products. 
•  In situ. Do vis/analysis while data still resident in 

memory. 
•  In transit. Do vis/analysis on a “nearby machine”, 

but don’t save to storage first. 
•  Workflow, work orchestration. Sequences of 

compute and data-centric operations. 
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Implications of Changing Architecture 

•  Vis/analysis codes need to be retooled to 
operate on new architectures 
– Many more cores/processor 
– Much less memory/core than in the past 
– Power constraints 

•  Likely to be as “disruptive” as the phase-
change from scalar to MPP 

•  Doing MPI per core won’t work, explicit 
threading unlikely to work. 
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The Cost of MPI per core 

•  Per PE memory: 
– About the same at 1728, over 2x at 216000. 

•  Aggregate memory use: 
– About 6x at 1728, about 12x at 216000. 
– At 216000, -only requires 2GB of memory for 

initialization per node!!! 

Howison, Bethel, Childs. MPI-hybrid parallelism for volume 

rendering on larrge, mult-core systems. EGPGV, 2010. 
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The Cost of MPI per core 

•  Per PE memory: 
– About the same at 1728, over 2x at 216000. 

•  Aggregate memory use: 
– About 6x at 1728, about 12x at 216000. 
– At 216000, -only requires 2GB of memory for 

initialization per node!!! 

Lessons learned: 
 
-  Doing MPI-per-core is not a sustainable solution 

at extreme scale 
-  MPI+X runs faster, uses less memory, moves 

less data. 

Thought about the future: 
-  Likely the case that explicit threading will run into 

the same barriers: limits caused by the weight of 
the overhead. 

-  Implicit parallelism (e.g., data parallel) holds 
much promise (e.g., CUDA does this on GPUs) 
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Implications of Changing Use Models 

•  Doing full-resolution data saves for post 
hoc analysis/vis likely not practical 
(possible?) 

•  Migration from post hoc to in situ  
– Codes need to be retooled:  

•  Past: calls to I/O library 
•  Future: calls to in situ infrastructure (footnote) 

–  Implications for sharing limited resources 
•  Cores, memory, data movement, power budget 
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Overview of In Situ Infrastructure 

ADIOS Code 
modification 
required 

I/O based, user-pluggable processing, can 
do I/O, runtime configurable, non-zero copy, 
inline data transformations, staging. 

GLEAN No code 
modification 
required 

I/O intercept, user extensible analysis (via 
the GLEAN API), staging. 

VisIt/Libsim Code 
modification 
required 

Tightly coupled, zero-copy (in progress), 
connects simulation to VisIt client. 

ParaView/
Catalyst 

Code 
modification 
required 

Tightly coupled, zero-copy, connects 
simulation to ParaView. 
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Implications of Changing Use Models 

•  Increasing emphasis on complex 
workflows (productivity) 
– Coupling between simulation, experiment 
– End-to-end view of data solutions 

•  Data management, processing, movement, 
analysis, vis, sharing/publishing, curation 

– Automation of formerly (presently?) manual 
operations 
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How is the community responding? 

•  Increasing portability and parallelism.  
–  Several research projects focusing on DSL-like 

approach for expressing algorithms, achieving high 
concurrency and platform portability (DAX, EAVL, 
PISTON, etc) 

•  Note: the same kind of thing is happening across many 
communities, including ML 

•  Infrastructure for legacy and future applications? 
–  Problem: VisIt and ParaView in widespread use 
–  Solution: SciDAC3 SDAV & vtk-m (2-3 yrs out) 
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How is the community responding? 

•  5-10 years out 
–  In situ infrastructure matures 
– Less distinction between “analysis” and “vis” 

•  It may be data features or statistics that are viewed 
rather than raw field/particle/mesh data 

•  Analysis of flow (e.g.), want to “see” analysis 
results 

– Evolving data software stack 
•  Accommodates major exascale challenges: 

resiliency, power, portability, resource mgt 
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Future of Large Scale Visual Data 
Analysis  
•  Code teams and in situ:  

–  “Resistance is futile.” 
•  Computing facilities: 

– Users will need help with in situ, workflow 
infrastructure. 

•  Question: how support to users have centers 
provided over the years for parallel I/O? 

– The future data-centric software will be much 
more complex than what you’ve seen in the 
past.  
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Future of Large Scale Visual Data 
Analysis  
•  Vis/analysis infrastructure will be ready for 

future architectures 
– This very subject consumes a large fraction of 

R&D funding. 
•  Partnering with facilities and code teams is 

a key element of achieving that objective 
– Data-centric projects/pilots help push the 

limits of technology and prepare you for the 
future. 
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